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Abstract-The torsion of two finite, coaxial, circular cylinders, of dissimilar materials, in contact, is considered.
The surface of contact is assumed to consist of two parts: an exterior region of slip and an interior region of
adhesion. Assuming that slip has progressed a sufficient amount, an analytical expression is given relating the
angle of twist with the constant shear stress (assumed) in the slip region, necessary to eliminate a singularity in
stress. The special case of an external crack, corresponding to zero shear stress in the slip region, is also discussed.

1. INTRODUCTION

THIS study considers the torsion oftwo finite coaxial circular cylinders, radius a, in contact.
One end of the two cylinder system is held fixed while the other is given a rigid rotation
about its axis through an angle, y. Two situations are considered herein: the case where a
sliding mechanism is allowed, e.g. as in the case of coulomb friction, and the case where
the cylinders are bonded together on a coaxial region of radius ao < a.

A discussion of the analogous half-space problem by Mindlin [IJ points out the need
for a theory of slip when considering the torsional contact problem for spheres. The
problem for the torsion of spheres incorporating this idea was subsequently solved by
Lubkin [2J who used techniques appropriate to the half-space in potential theory. His
method was to prescribe the following boundary conditions on the surface of the half­
space:

v = rxr

a~r<OCJ

where a is the radius of contact, a o is the radius of the circle separating the slip region from
the region ofadhesion and g(r) is a function describing the relationship between the normal
force and the tangential shearing force. For Lubkin's problem, g(r) was taken to be pro­
portional to the normal stress as given by the Hertz theory. A later paper by Keer [3J
considered the analogous problem of the torsion of a rigid die indenting an elastic layer.

The problem of two cylinders in contact reduces to the same considerations as in the
half-space problem. If two cylinders bonded together by a circular region, radius ao < a,
are then twisted, a stress singularity will occur for r = ao . If a friction law is assumed for
r > ao , then the radius of contact, ao, can be chosen so as to make the singularity vanish.
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In the work to follow it is assumed that the law of friction produces a constant stress
distribution, (Jzo, in the region of slip.

The next sections consider the formulation for the contact problem of two elastic,
isotropic, and homogeneous cylinders, identical in geometry but of different materials.
Boundary conditions analogous to the half-space problem are established and the solution
to the problem will be seen to depend upon the solution to dual series equations that have
been studied by Srivistav [4]. The solution of Srivistav is then applied to the particular
problem at hand. An approximate result valid for ao/a < 0·5 is derived for the relation
between angle of twist and the stresses imposed by the sliding friction necessary to eliminate
a singularity in stress. Finally, the case of two cylinders bonded together by a circular
region of radius ao < a is discussed. As no friction will be assumed for this case, the
"contact" problem is reduced to the problem of an external crack between two cylinders.
The problem can be shown to be the same in this case, except for certain constants, as that
treated by Sneddon et al. [5]. Griffith's theory of fracture [6, 7J is applied to this problem
to determine the critical value of applied torque. The solutions to these problems will be
sought by methods appropriate to the classical infinitesimal theory ofelasticity.

2, DERIVATION OF EQUATIONS AND REDUCTION TO DUAL SERIES

The cylindrical coordinates r, () and z are used, and the coordinate system is centered
at the fixed end of the two cylinder system (z = 0, 0 ~ r ~ a). The cylinder that is held
fixed at one end occupies the region 0 ~ z ~ l5, 0 ~ r ~ a, and is denoted by the super­
script 1. The rotation, y, is applied to the end (z = 2l5, 0 ~ r ~ a) of the second cylinder
which occupies the region l5 ~ z ~ 2J, 0 ~ r ~ a, and is denoted by the superscript 2.
Since only torsional stresses are set up in the cylinders when the rotation is applied, the
only non-zero displacement is the circumferential displacement woo Further, the only
non-zero components of the stress tensor are the shearing stresses

owo
(Jzo = J1. 8z '

a(wo)(J = J1.r--
rO or r

(2.1)

where J1. is the shear modulus. It is convenient to proceed with the solution in non-dimen­
sional form by substituting

r = ap, z = ax,

In the absence of body forces, in the equilibrium state, Uo satisfies the partial differential
equation

j)2 UO +! cUo _ Uo + j)2 UO = 0Cp2 P cp p2 ox2 .
The boundary conditions for the problem are;

(2.2)

~(uJ) = 0, p= 1 (o~x~~) (curved surface of rod 1- (2.3)op· p stress free)

:p(~) = 0, p= 1 (o~x~~) (curved surface of rod 2- (2.4)
stress free)
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UJ = 0, x=o (0 ~ p ~ 1) (2.5)

u~ = yp,
D

(0 ~ p ~ 1) (2.6)X = 2-
a

uJ = u~,
D

(0 ~ p < c) (continuity of U6) (2.7)X=-
a

lOUJ 20U~ D
(0 < p ~ 1) (continuity of 0"z6) (2.8)

11 ax = 11 ax' X=-
a

lOUJ 2au~ S D
(c < p ~ 1) (2.9)ll ax =ll ax = , X=-

a

where S is the constant stress distribution, O"z6, in the region of slip, and c = ao/a.
If the forms

'Yo

uJ = Bopx+ L BnJl(.A.nP)sinh(Anx),
n= 1

(2.10)

u~ = YP+AoP(2~-X)+ f AnJl(AnP)SinhAn(2~-X) (2.11)
a n= 1 a

are assumed, then the boundary conditions (2.3) and (2.4) are satisfied if the {An} are the
positive zeros of the equation

(2.12)

Further, the forms (2.10) and (2.11) satisfy boundary conditions (2.5) and (2.6), respectively.
Continuity of stress, boundary condition (2.8), requires that

Ao = -ll l /1l 2Bo,

An = -ll l/1l 2Bn'

The displacement U6 and stress Sx6 can now be written as
YJ

uJ = BoPx + L BnJ l(AnP)sinh(Anx), (2.13)
n=l

00

S~6 = Bop+ L AnBnJ l(AnP)cosh(AnX), (2.15)
n=l

To satisfy boundary conditions (2.7) and (2.9), the following equations are obtained

D 00 ( D)(1 +lll/1l2)BoPa+(1 +ll l/1l 2)Jl Bnll(AnP)sinh Ana = YP (0 ~ P < c) (2.17)

IllBoP+Il\~l AnBriJl(AnP)cOSh(An~) = S (c < p ~ 1). (2.18)
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If the substitutions

rt: = bfa, en = AnBncosh (An~ )

are made, and it is assumed that An(b/a) is sufficiently large* so that tanh[An(b/a)] = 1,
equations (2.17) and (2.18) become

00

rt:Cop + 2: A; IcnJ I (AnP) = f3p
n=1

(0:::; P < c) (2.19)

'XJ

CoP+ I cnJI(AnP) = K
n=1

(c < P :::; 1). (2.20)

3. SOLUTION OF DUAL SERIES AND APPROXIMATION FOR LARGE
SLIP AREA

The dual series equations (2.19) and (2.20) are special cases of the dual series studied by
Srivistav [4]. Srivistav assumes that

(0:::; P < c) (3.1 )

and then shows that the coefficients Co and Cn satisfy the relations

(3.2)

(3.3)

the function g(t) satisfying the Fredholm integral equation

g(t) = X(t) +J: L(t, u)g(u) du, (3.4)

where

and

16(1-2rt:) 4foo K 2(y) ..
L(t, u) = tu +2 --[8tuI2(Y)- smh(ty)smh(uy)] dy.

n n 0 I 2(y)
(3.6)

* It is noted Ihat A. 2 A, = 3·8317 and i5/a > 1·4 implies that tanh(A.i5/a) = .ooסס·1
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(3.7)

Further, Srivistav shows that the infinite series in equation (3.5) can be written in the form

2
;, J t(Anu)sin()"nt ) __ 2tH(u - t) J 2
L. 4ut (1-t)
n; t AnJi(An) uJ(u2

- t2
)

2 Jro K 2(y) . }-- -(- smh(ty){4uliy)- yI t(uy) dy,
7[ oyI2 y)

where H(p) is the Heaviside unit function.
If the expression for the infinite series given above is substituted into equation (3.5)

and the integrations in each of the 3 terms in this equation are performed, Erdelyi [8], the
free term, X(t), becomes

(3.8)

where

(3.9)

The functions L o and L t are modified Struve functions, McLachlan [9].
A numerical treatment, discussed in the sequel, indicated that for values of c less than

0'5, the infinite series portion of the kernel of the integral equation (3.4) can be neglected,
in which case

16(l-2a) Je
g(t) = X(t) + t ug(u) du,

n; 0

where X(t) is given by equation (3.8). Hence

g(t) = X(t)+ 16(1-2ct)(AK +Df3)t
7[

where

(3.10)

(3.11)

(3.12)

(3.13)
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and

16(1- 20()C3
]

3n . (3.14)

The stress, Sxo, at the interface, given by equation (3.1), can be written in the alternate
form

(3.15)(0:$ P < c).
S - g(c) _ fe ~{g(t)l dt

xo(p) - C~(C2 _ p2/ P pdt t f ~(t2 _ p2)

To investigate the stress at p = c, take p = c - e and change the variable of integration
from t to u = c- t. It is easily seen that to the first order in e

(3.16)S o(c-e) = ~+cft ~r~(c-u)l du
x ~(2ce) 0 duL c-u J~[2c(e-u)r

Now if g(t)/t is differentiable in the neighborhood of t = c, this result can be written as

g(c) J
Sxo(c-e) = -J(2ce) +O( e).

Hence if Sxo(c-e) tends to a finite limit as e -+ 0, then

g(c) = o. (3.17)

(3.18)

For c < 0'5, an approximate expression for g(t) is given by equation (3.11). The criterion
(3.17) is applied to this approximation to obtain the relation

f3 = K{4(20(-l)A - X(C)}
[1-4(20(-1)D] ,

where

(3.19)x(c) = ~[X(C)- 4Cf3],
4cK n

and the terms within the braces are independent of K and [3.
Equation (3.18) is a relationship involving the angle of twist, 0( = ()ja, and the constant

shear stress in the slip region, necessary to eliminate a singularity in the shear stress, when
c < 0·5.

4. SPECIAL CASE OF AN EXTERNAL CRACK

In the case ofan external crack, K = 0 and the free term given by equation (3.8) becomes

4[3
X(t) = -to

n
(4.1)

The integral equation (3.4) can now be written as

4[3 fe
g(t) = -t+ L(t, u)g(u) du,

n 0
(4.2)



Torsion of elastic cylinders in contact

where the kernel, L(t, u), is given by equation (3.6).
From equation (3.19) it immediately follows that

Uo = yp/(1 +Jit /JiZ) (x = fJ/a).
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(4.3)

It is clear that the Reissner-Sagoci problem for a finite cylinder studied by Sneddon et al.
[4] is recovered. If the two materials are unequal, quantities of physical interest, e.g. stress
and displacement, will be functionally the same as in the Reissner-Sagoci problem. The
resultant integral equation with the exception of certain modifications is the same as that
given by Sneddon et al. and the solution is analogous.

The dependence on (3 and 1:1. of the governing integral equation (4.2) can be removed by a
simple device. Define

G(t) = g(t)

4{3 16(1- 21:1.)f () d-+ ug u u
n: n: 0

It is clear that G(t) satisfies the integral equation

G(t) = t +S: K(t, u)G(u) du,

where

K(t, u) = 4zfoo Kz((Y)) [8tuI z(y) - sinh(ty)sinh(uy)] dy,
n: oIzy

(4.4)

(4.5)

i.e. an equation independent of (3 and 1:1..
Anumerical solution ofthe function G(t) was obtained by replacing the integral equation

by a finite system of linear algebraic equations, following Kantorvich and Krylov [10].
The number of pivotal points (G(t) determined at each pivotal point) on the interval (0, c)
was varied up to a maximum of 40 to investigate the smoothness and consistency of G(t).
Curves of the obtained values of G(t) are given in Fig. 1 for c = 0'3,0'5,0'65,0'7,0'75,
0'85, and 0·95.

Multiplying both sides ofequation (4.4) by t and integrating with respect to t from 0 to c,
it is found that

where

g(t) = 4{3 [1 + q>/(1 - q»]G(t),
n:

16(1- 21:1.)1 G() dq> = u u u.
n: 0

(4.6)

(4.7)

Equation (4.6) is a convenient representation of the function g(t) from which quantities
of physical interest can be calculated.

For c < 0'5, G(t) '" t, and g(t) is found to be

4{3 [ 16(1- 21:1.)c3 /3n: ]
g(t) = -; 1+ 1-16(1 _ 21:1.)c3/3n: t.
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G(t )= t

c=0.75
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FIG. I. G(t) YS. I for 0 < c < 0·95.

The linearity ofg(t) for c < 0-5 is a conclusion also reached by Sneddon et al. [5].
Using equation (3.13) for the shear stress at the interface of the two rods,

g(c) p
Sxo(p) = - J( 2 2)'

C c-p

For points near c (ie., p -t c), the stress SxJc-) is written as

(4.8)

(4.9)

where N = g(c)/J(2c) is called the stress intensity factor, Barenblatt [11], and S is the
distance of a point in the interface from the contour p = c. A plot of NIP, for a = 10, is
given in Fig. 2. (For c > 0'5, numerical integration was used to obtain values from equation
(4.6).)

The torque M required to produce the twist, y, is

M = 21tJlla3f~ p2Sxo dp = 4~Clg~)J

or after some manipulation

c < 0-5. (4.10)
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oL-_L-..---J'----'~__'_ ___l_ ___>._ ____'___ ____'___ _l._......;:.:._,-,,--C
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIG. 2. Stress intensity factor NIP for 0 < c < 0·95.

807

The strain energy of the two cylinder system is

tMy. (4.11)

Expressing y in terms ofM from equation (4.10), the strain energy can be written in the form

(1 +JJ 1//12)IXM2 [ 3n -16C3]
1+ (~1~

n/1 I a3 32ac3 '

The increase in strain energy, due to the presence of the crack, is therefore

(4.13)

It is noted that the strain energy, under the action of the applied torque M, is "increased"
by the presence of the crack. This is in agreement with Spencer [12], where the change in
strain energy of an elastic plate, in plane strain or plane stress, due to the presence of a
crack, is considered.

The surface energy ofthe crack is

(4.14)

where To is the specific energy required to form the unit surface of the crack. The criterion
for the crack to propagate is

o(U-W) = 0
oc . (4.15)

Substituting equations (4.13) and (4.14) into (4.15), it is found that the critical value of
applied torque is

c < 0·5. (4.16)

Acknowledgements~In conclusion the authors wish to express their appreciation to the NASA Traineeship
Program and to the U.S. Army Research Office-Durham for their financial support during the time in which this
work was completed.



808 N. J. FREEMAN and L. M. KEER

REFERENCES

[I] R. D. MINDLIN, Compliance ofelastic bodies in contact. J. appl. Mech.16, 259 (1949).
[2] J. L. LUBKIN, Torsion ofelastic spheres in contact. J, appl. Mech. 18, 183 (1951),
[3] L. M, KEER, Torsion of a rigid punch in contact with an elastic layer where the friction law is arbitrary.

J. appl. Mech. 31, 430 (1964).
[4] R. P. SRIVISTAV, Dual series relations--H. Dual relations involving Dini series. Proc. R. Soc. Edinb. A66, 173

(1964).
[5] I. N. SNEDDON, R. P. SRIVISTAV and S. C. MATHUR, The Reissner-Sagoci problem for a long cylinder of

finite radius. Q. JI Mech. appl. Math. 19, 123 (1966).
[6] A. A, GRIFFITH, The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. A221, 163 (1921),
[7] A. A. GRIFFITH, The theory of rupture. Proc.1st Int. Congo appl. Mech. 53 (1924).
[8] A. ERDELYI et al., Tables of Integral Transforms, Vol. 2, p. 22. McGraw-Hill (1954).
[9] N. W. McLACHLAN, Bessel Functions for Engineers, 2nd edition, p. 76. Oxford University Press (!955).

[10] L. V. KANTORVICH and V. I. KRYLOV, Approximate Methods of Higher Analysis. p. 98. Noordhoff(I964).
[II] G.!. BARENBLATT. Advances in Applied Mechanics. Vol. 2, p. 55. Academic Press (1962).
[12] A. J. M. SPENCER, On the energy of the Griffith crack. Int.J. engng Sci. 3, 441 (1965).

(Received 2 November 1966)

Resume-La torsion de deux cylindres circulaires co-axiaux finis, de materiaux dissemblables, en contact, est
consideree. La surface de contact est supposee etre constituee de deux parties: une region exterieure de glissement
et une region interieure d'adhesion. En supposant que Ie glissement a progresse d'une quantite suffisante, une
expression analytique est donnee rapportant l'angle de torsion al'effort de cisaillement (suppose) constant dans
Ia region de glissement, neeessaire pour eliminer une particularite de tension. Le cas special d'une fissure externe,
correspondant aun effort de cisaillement nul dans la region de glissement, est aussi discute.

ZusammeDfassung-Die Verdrehung zweier endlicher coaxialer kreisfOrmiger Zylinder aus ungleichen Materi­
alien, im Kontakt wird untersucht. Die Kontaktftachen werdtn als zweiteilig angesehen, der aussere Gleitbereich
und der innere Adhasionsbereich. Vorausgesetzt, dass das Gleiten einen bestimmten Fortschritt gemacht hat,
wird ein analytischer Ausdruck gegeben, der den Drehwinkel mit der angenommenen Spannung des Gleitbereiches
gibt, der notwendig ist urn Singularitat der Spannung zu vermeiden. Der besondere Fall cines ausseren Risses,
was einer Verschwindenden Scherspannung des Gleitbereiches entspricht, wird auch besprochen.

A6cTpaKT-MccJIem'CTClI xpy'leliHe ,LI.ByX XOHe'lHhIX, COOCHbIX, XPYrJIhIX I.UlJIHH,LI.pOB, H3fOTOBJIeHLlX H3

pa3HhIX MaTepHaJIOB, HaxO,LI.lIlII;J:lXCJI B XOIiTaKTe. IlO,LI.pa3YMeaaeTcll, 'ITO IIOBCPXHOCTJ, KOHTaKTa COCTOHT

H3 ,lIBYX 'laCTeil:: BHeWHero pail:oHa CKOJIJ,)f(eHHlI H BHyTpeHHoro pail:oHa Cl\eIIJIeHHlI. IIpe,llIIOJIarall, 'ITO

CKOJIh)f(CHHe HMeeT OCHOBHoe BJIHlIHlle, MeTcll aHaJIHTH'lecxoe BbIpalKeHHe xacaJ01I.\eeClI yrJIa xpy'leHHlI

C IIOCTOllHHhlM HanplIlKeHHeM C,LI.BHra (npe,llnOJIaraeMbIM) B pail:oHe CKOJIhlKeHHlI, Heo6xo,LI.HMLlM Mll

YCTpaHeHHJI cHHryJIlIpHOCTH B HanplllKeHHH. IIpHBO,LI.HTClI TaXlKe Cnel\llaJIhHa1l3a,LI.a'la BHemHeR Tpe1l.\HHhI,

COOTBCTCTBYJ01I.\a1l HyJIeBoMy HanplllKeHllll C,lIBHra B pail:oHe CKOJIhlKeHHlI.


